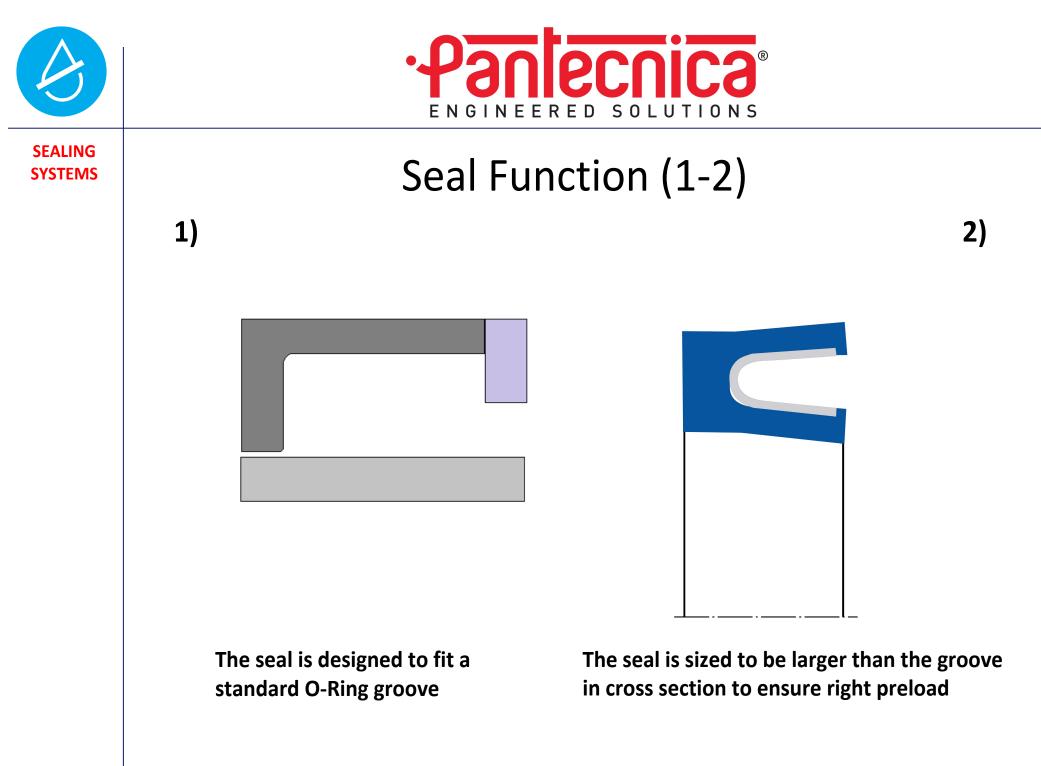


Springflon[®] Description and Function

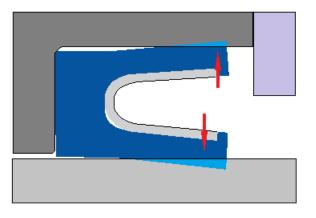
SYSTEMS


Springflon®

Springflon[®] are single-acting, spring-energized seals used in dynamic and static applications under extreme conditions for pressure, temperature, and/or with aggressive fluids.

The principle of this type of seal is based on:

- 1. U-shaped profile responsive to pressure
- 2. A metal spring with a constant preload function
- 3. Compound with high characteristics and performance



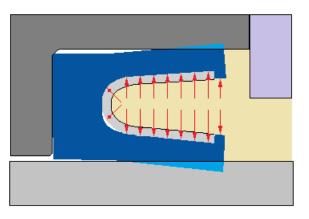
SYSTEMS

3)

Seal Function (3)

The sealing lips are compressed in the groove during assembling; the spring force counteracts the compression and pushes the sealing lips against the groove ensuring perfect preload.

This preload and contact provides sealing function also at "zero" pressure.



SYSTEMS

4)

Seal Function (4)

When the seal is subjected to system pressure, this produces an additional load on the sealing lips. The combined force between the working pressure and the spring load increases the load of the lips in the groove.

All Springflon[®] are based on the same operating principle and differ only in the profile form and the metallic spring used.

Material-Based Comparison

Properties	Elastomeric Seals	Springflon®
Low Static and Dynamic	High friction, Stick-slip and	Very low friction, No stick-slip,
Friction	Heat generation	Self lubricating, Runs cooler
Fluid Compatibility and Chemical Resistance	Compatibility to be verified,	Virtually total chemical
	Problems at high	compatibility even at high
	temperatures	temperature
Temperature Range	Often very expensive for	No problem from -200°C to
	high and low grades	+260°C
Resilience and Elasticity	Resilient, but prone to	Low resilience enhanced by
	compression set	metallic springs. No ageing
Extrusion Resistance	Good with back-Up Ring,	Excellent, even with high
	poor with high clearance	clearance
Shelf Life	Risk of vulcanisation of	No vulcanisation to metal in
	elastomer to surfaces	contact. Long shelf life

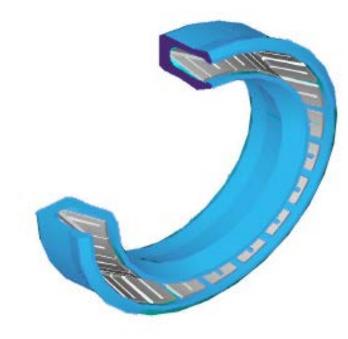
Material-Based Comparison

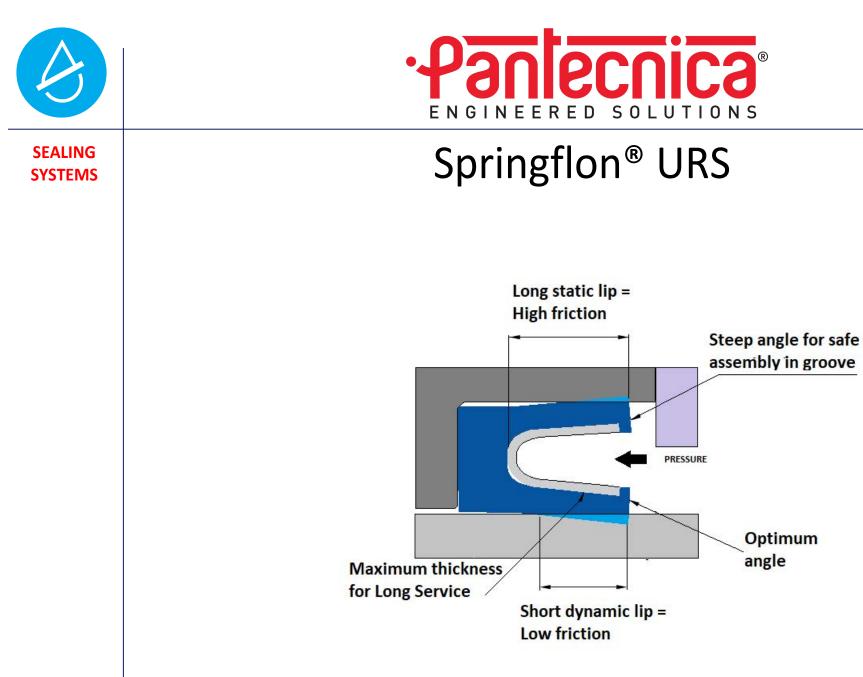
Properties	Elastomeric Seals	Springflon®
No Media Contamination No	Limited use in food and pharma	Ideal for use in
outgassing	sectors	food/pharma/medical sector
Dynamic Sealing	High friction limits speed. Heat	High speeds up to 15m/sec.
	generation limits life	Then speeds up to 15m/sec.
Wear Resistance	Good in lubricated service, no in	Excellent lubricated or dry service
	dry service.	with high or low pressure
Light Gas, Low Pressure	Excellent at tightly or minimal	Good. Requires heavy spring for
Sealability	pressures. Easily seals vacuum.	high vacuum.

SYSTEMS

Design and Flexibility

Properties	Elastomeric Seals	Springflon®
Groove dimension	Standard Specification	Standard Specification groove
standard	groove sizes	sizes
Design Flexibility	Moulds required	Full design flexibility. No
		fitting into closed grooves
Wide Pressure range	Not for high pressure. Use	Excellent from vacuum to
	of Back-Up improves limits	300MPa pressure
Relative cost	From very low to moderate	Higher cost is offset by
	for most compounds. Very	performance benefits against
	high for perfluorinated	elastomeric capabilities

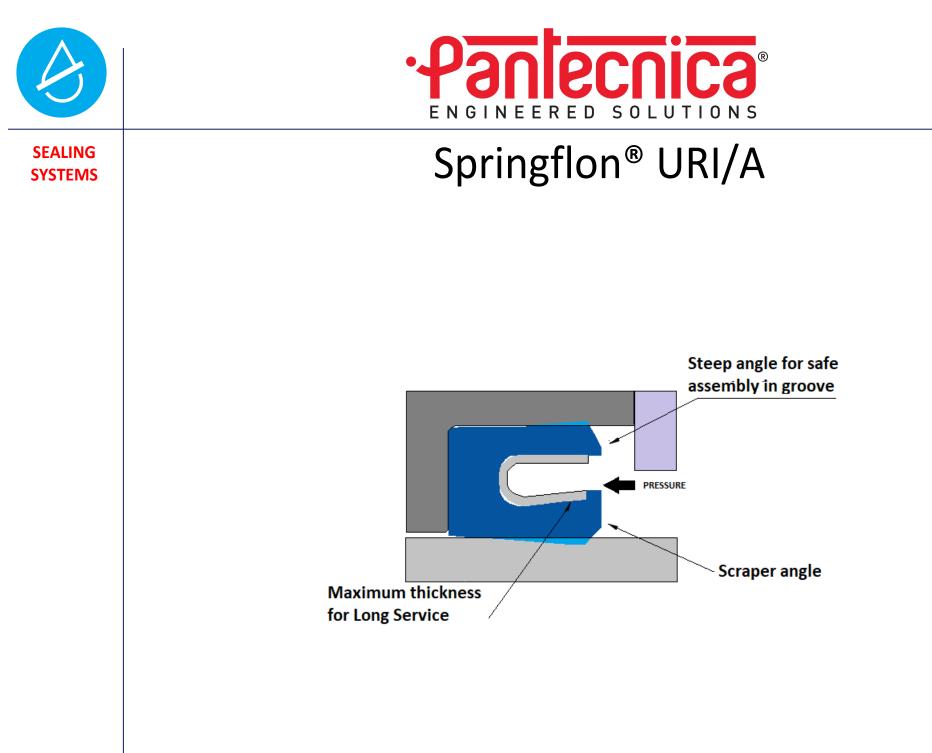

Standard Seals


Springflon[®] URS

URS-B / URS-A

Advantages:

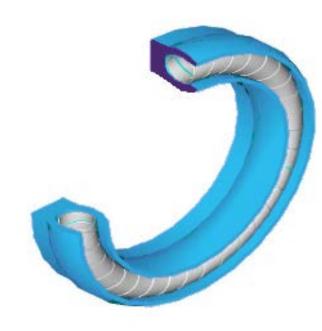
- Execution for rod (B) and for piston (A)
- Medium spring load
- Good flexibility
- For dynamic linear applications with long life
- Limited in rotary applications

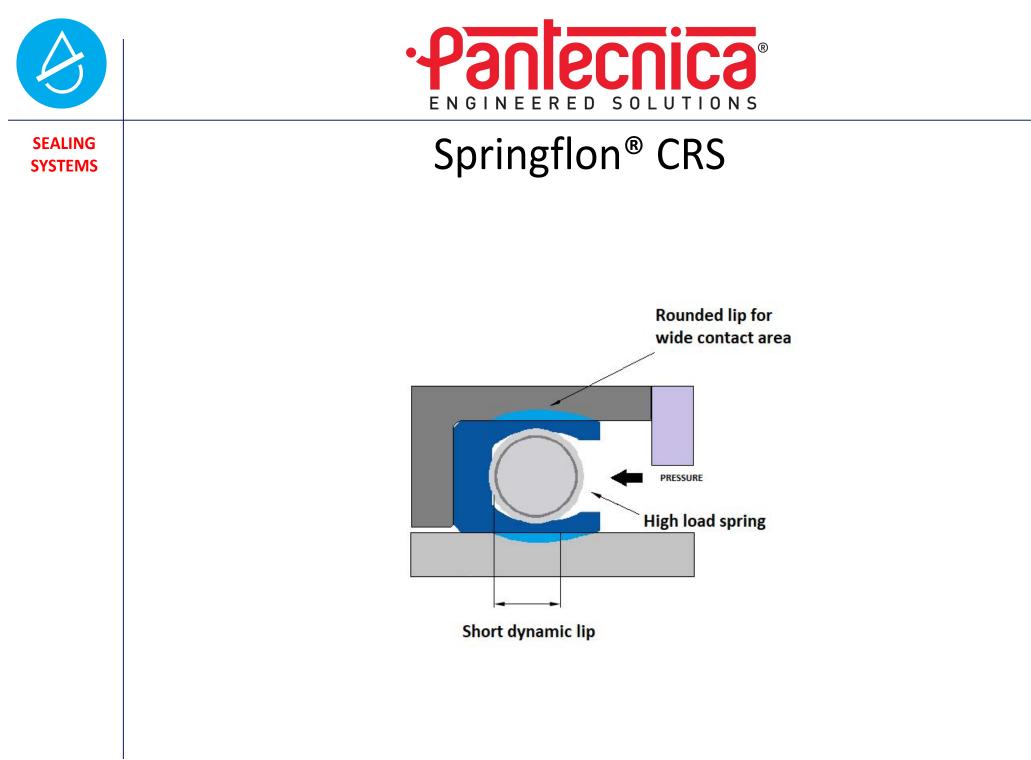

Springflon[®] URI/A

URI - URA

Advantages:

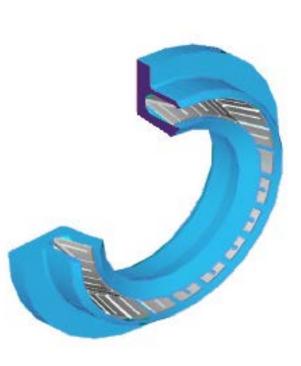
- Execution for rod (I) and for piston (A)
- Similar to URS
- Optimised for scraping
- For sticky or particle filled fluids




Springflon[®] CRS

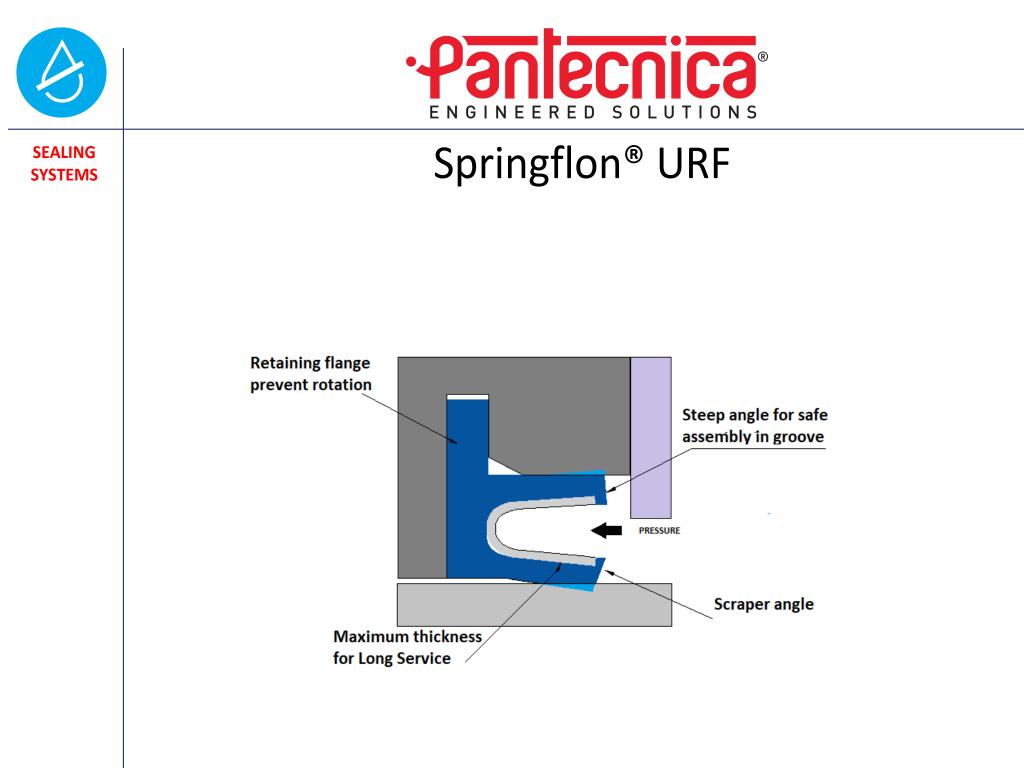
CRS-B / CRS-A

Advantages


- Execution for rod (B) and for piston (A)
- Spring with high force
- For sealing gasses and low viscosity fluids
- Good low temperature performance
- For static or low speed applications

URF

Advantages:

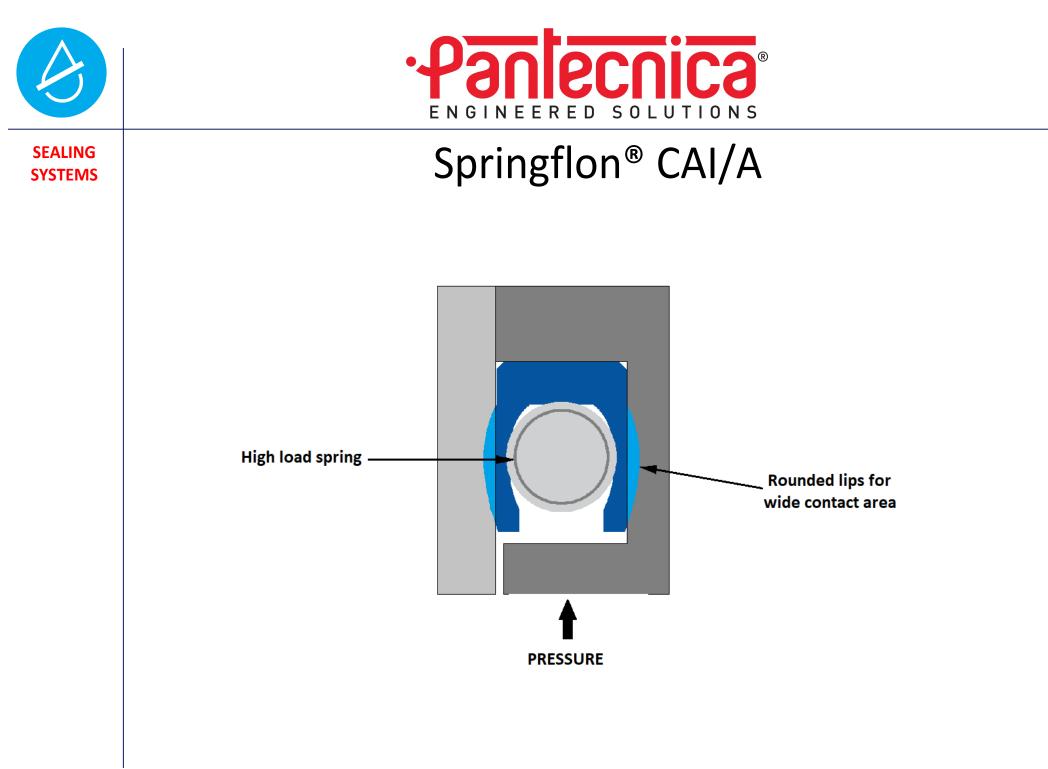

ENGINEERED SOLUTIONS

Springflon[®] URF

• For rotary dynamic applications on rod

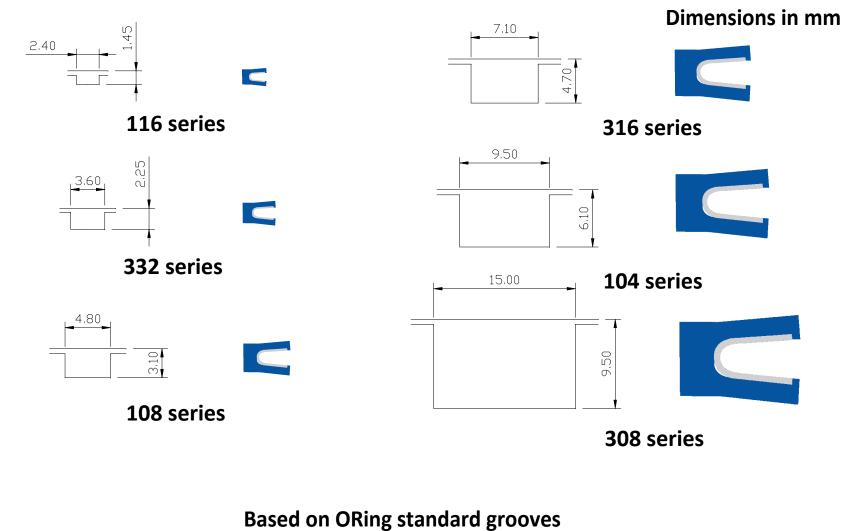
<u>c</u>a

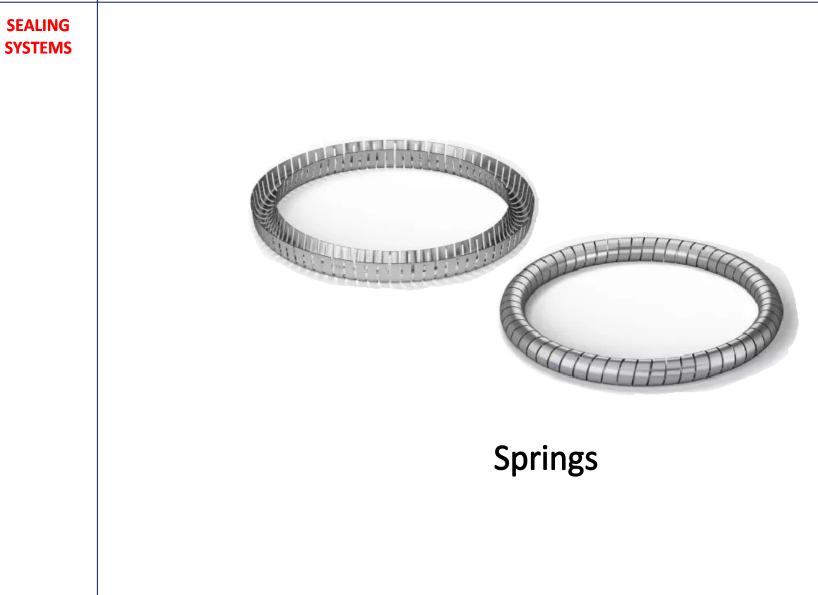
- Speed up 2m/s, Pressure up to 25MPa
- Positively fixed in the groove by the flange


Springflon[®] CAI/A

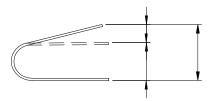
CAI / CAA

Advantages:


- Face sealing version of CRS-A/CRS-B types
- Spring with high force
- For flange sealing
- Internal (I) and external (A) sealing versions



Standard Seal Series

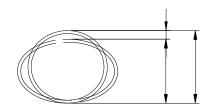


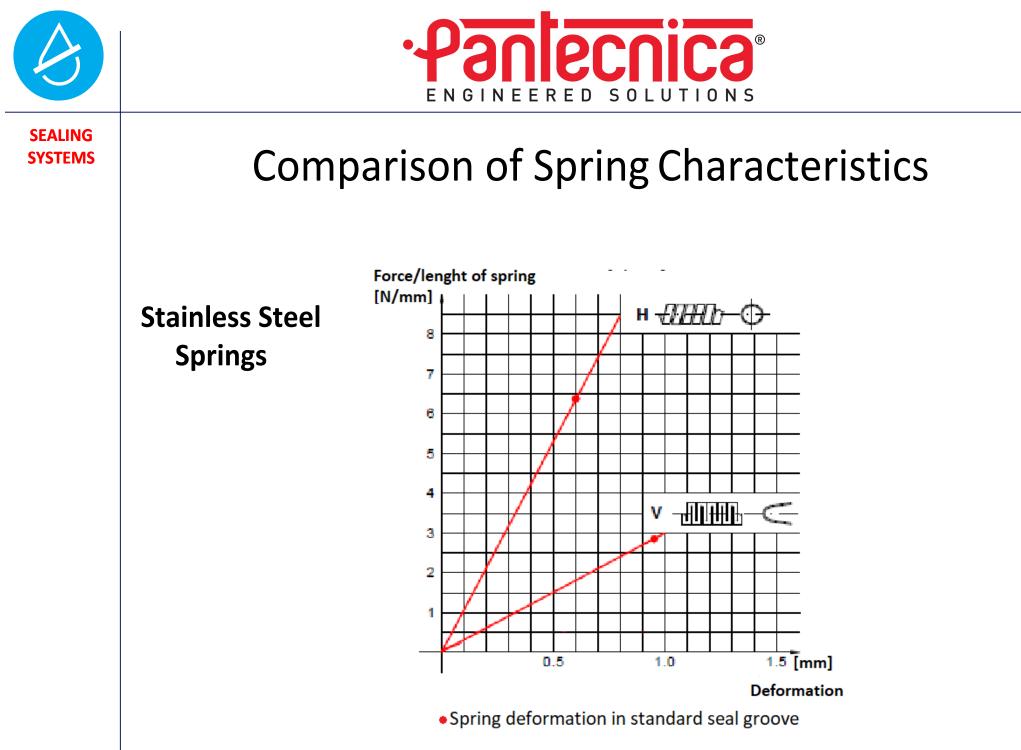
V Spring Spring Force Deformation

Advantages:

STANDARD = MEDIUM SPRING LOAD

- Medium deflection versus change in spring force
- Good all round performanceLoad rises proportionally as deflection increases
- Spring load and seal deflection will reduce as the seal wears




Coil Spring Spring Force Deformation

Advantages:

STANDARD = HEAVY SPRING LOAD

- Small deflection with large change in spring force
- Requires careful installation to avoid overcompression
- Excellent for static applications

Springs Material Selection

Material code	Material Description	Application
С	Stainless Steel Material: 1.4310 - X12Cr NI177 - AISI 301	General use e.g.: Air / Gasses, Water / Steam / Food / Drugs / Oil / Grease / Solvents
Н	Hastelloy® C-276 Material: 2.4819 - Ni Mo 16Cr-15W - UNS N 10276	Corrosive media e.g.; Acids, Caustics, Sea water, Steam
E	Elgiloy [®] Material: 2,4711 - Co Cr20 Ni15 Mo - UNSR 30003	Petrochemical use e.g.: Sour gasses (Hydrogen Sulphide H2S), Crude Oil

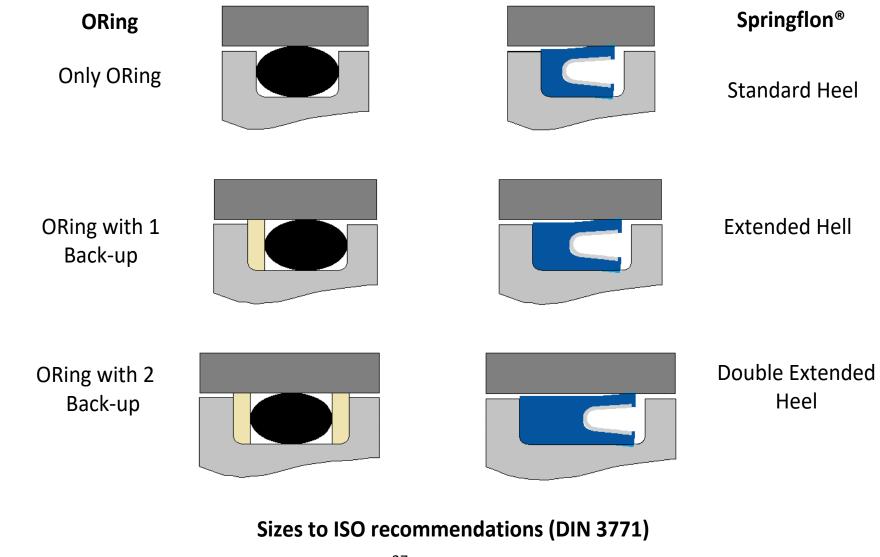
Hastelloy is a registered trademark of Cabot Corporation
Elgiloy is a registered trademark of the Elgiloy Company

SYSTEMS

Spring: Silicone Filling

HiClean

Advantages:


- Excellent in food and pharma applications
- Provides easy cleaning, in CIP and SIP conditions
- Rejects dirt

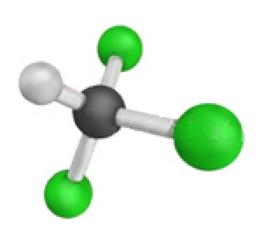
SYSTEMS

Standard Seal Width

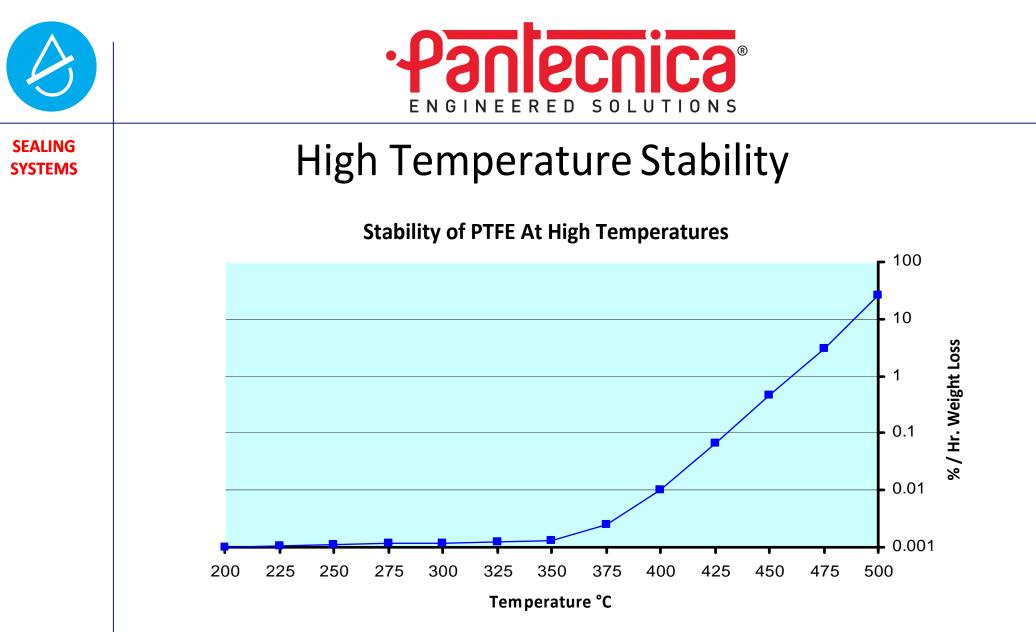
Selection of Extended Hell and Corner Reinforcement

Standard Heel - Pressure up to 20MPa

Extended Heel - Pressure up to 40Mpa


Extended Heel + Corner Back-up- Pressure in excess of 40MPa

A corner Back-up should also be selected if the extrusion gap is in excess of recommendations data.



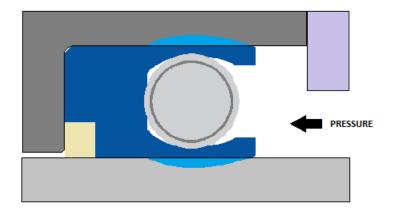
Compounds

The graph details the percentage weight loss of material per hour at elevated temperatures

Material Selection

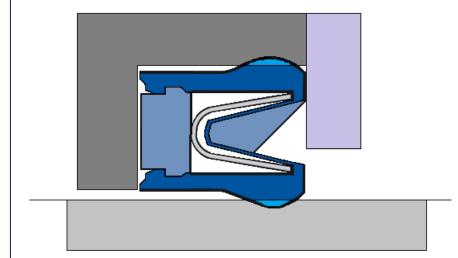
Commonly Selected Compounds

Material Code	Application	
N.1 - F1	Generally used in static, slow dynamic or light duty applications. For food	
IN.I - FI	and pharma applications requiring FDA approval.	
N.32	Light duty material with greater wear resistance than N.1. Used for	
11.52	reciprocating and rotary applications.	
N.25	Recommended for dynamic applications, particularly dry running media,	
N.23	e.g. air, gas and sea water.	
	Excellent wear and low friction, is suited to both reciprocating and rotary	
N.28	applications. Requires hardened dynamic hardware surface. Not	
	recommended for gasses and low viscosity liquids.	
N.21	Recommended for high pressure and demanding dynamic applications.	
N.ZI	Also good for sea water and steam use	
N.10 - F40	Especially suited to low pressure dynamic and rotary applications and	
N.10 - F40	running against unhardened surfaces.	
N.8 - F8	Outstanding wear and abrasion resistance. Good lubricity in water based	
IN.0 - FO	media. Upper service temperature limit of 80°C.	
K129	Back-up ring and corner reinforcement ring material with high extrusion	
N123	resistance and low friction coefficient.	



Special Seals

Corner Back-Up


A Springflon CRA with Corner Back-Up for High Pressure or big clearance

SYSTEMS

Springflon[®] Sanitary URS-C

Advantages:

Symmetric PTFE lip seal energized by "V" spring in AISI 301 DIN1.4310 and totally covered, suitable for linear and rototranslating movements.

- Symmetrical design of sealing lips.
- Good scraping action together with good dynamic sealing even in the presence of high-viscosity fluids.
- Suitable also for light rotary applications
- Excellent in food and pharma sectors with CIP and SIP conditions

Springflon[®] Sanitary URS-C

Technical data:

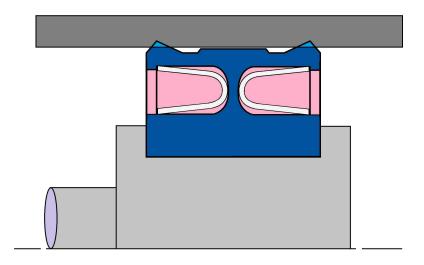
T: -75°C to +260°C P: up to 25MPa V linear: up to 5 m/s V rotating: up to 1 m/s

Limitations:

Certain size limitations Certain material limitations

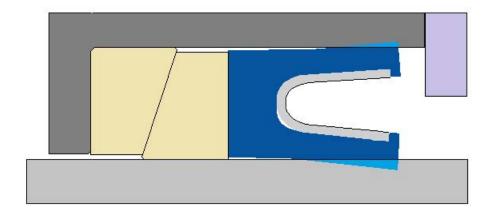
- Good sealing efficiency
- Wide thermal working range
- No aging
- Low coefficient of friction
- Simple seat design
- Compatible with almost all fluids
- No contamination of fluids
- No sticking to mating surface
- Good wear resistance
- No stick-slip
- CIP (Clean in Process) and SIP (Sterilization in Process) sterilizable
- Can be supplied from 20mm rod up to 630mm

Double springed Springflon URS which can be designed for any groove dimension.


The ORing prevents seal shrinkage, leakage on the outer diameter, and stabilizes the seal by preventing it from rotating in place in applications with wide temperature variations.

SYSTEMS

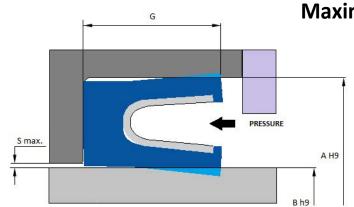
Springflon[®] Double Acting Piston Seal



Springflon[®] double acting piston seal which is clamped on the I/D. HiClean version shown is specified for food filling machines

Special Springflon[®] for High Pressure

A sealing solution designed to take extreme pressures and/or large extrusion gaps



Hardware Recommendations

Extrusion Gap

Maximum Extrusion Gap

S max. Radial Clearance					
Pressure / Series	2,0MPa	10,0MPa	20,0MPa	40,0MPa	
116	0,20	0,10	0,08	0,05	
332	0,25	0,15	0,10	<mark>0,</mark> 07	
108	0,35	0,20	0,15	0,08	
316	0,50	0,25	0,20	0,10	
104	0,60	0,30	0,25	0,12	
308	0,90	0,50	0,40	0,20	

If isn't possible to meet these values, it is recommended a Back-Up reinforcement

Surface Finish

Maximum Surface Roughness

Media	Rotary Surface	Reciprocating Surface	Static Surface
Cryogenic & Low Molecular Gasses	Ra = 0,1µm	Ra = 0,2µm	Ra = 0,3µm
Hydrogen, Helium, Freon, Oxygen	CLA = 4 μin.	CLA = 8 μin.	CLA = 12 μin.
Low Viscosity Fluids & Gasses,	Ra = 0,2µm	Ra = 0,3µm	Ra = 0,6µm
Air, Alcohol's, Hydrazine, Gaseous Nitrogen, Natural Gas	CLA = 8 μin.	CLA = 12 μin.	CLA = 24 μin.
Medium to High Viscosity Fluids	Ra = 0,2µm	Ra = 0,4µm	Ra = 0,8µm
Water, Hydraulic Oil, Crude Oil, Skydrol, Gear Oil, Sealants	CLA = 8 μin.	CLA = 16 μin.	CLA = 32 μin.

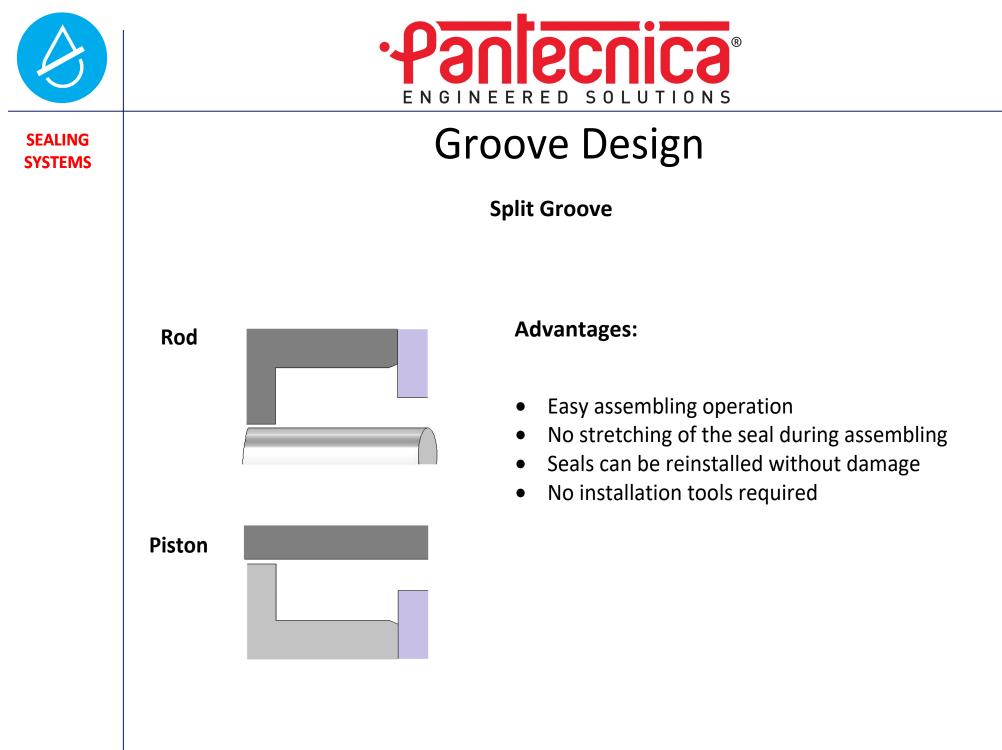
For an optimal solution of the surface roughness in contact with the dynamic sealing lip an Rmr > 70% is strongly recommended

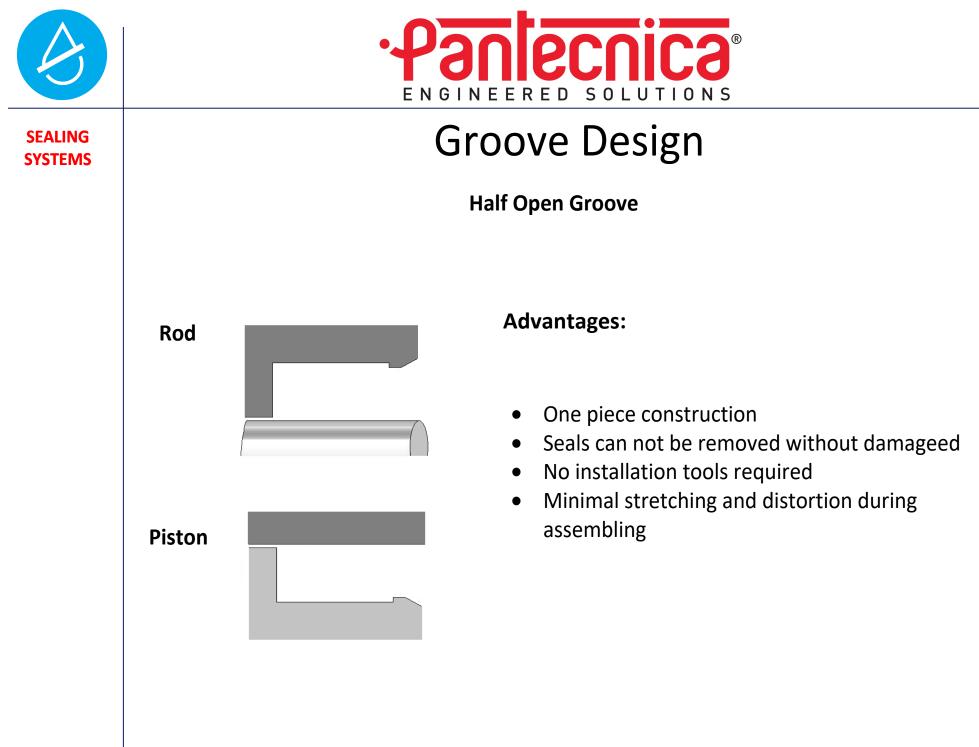
Surface Finish

The Influence of Surface Roughness on Seal Friction

Surface Profile	Surface Finish Ra	Interlocking Friction	Adhesive Friction	Total Friction
	0,4 - 0,8μm (16 – 32μin)	Medium	None	Medium
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,2 - 0,4μm (8 – 46μin)	Low	None	Low
	0,1 - 0,2μm (4 – 6μin)	Very Low	None	Very Low

43




### Surface Hardness

#### **Minimum Surface Hardness**

Type of	Surface Speed	Lubrication	Rockwell C Hardness				
Motion	Surface Speed	Lubrication	At 0 MPa	1 MPa	5 MPa	10 MPa	<35 MPa
	Up to 0,50 m/s	Good	28	28	30	35	44
	00 10 0,50 m/s	Poor	30	30	35	40	50
Reciprocating	$O_{VOR} O E O m/c$	Good	35	35	40	44	50
	Over 0,50 m/s	Poor	44	44	48	50	60
	Up to 0,75 m/s	Good	35	35	50	50	70
		Poor	44	50	55	60	70+
Poton	Up to 2,50 m/s	Good	55	58	65	70	70+
Rotary		Poor	60	65	70	70+	
	Over 12 70 m/s	Good	58	65	70	70+	
	Over 12,70 m/s	Poor	65	70	70+		









### Shaft Materials

#### Shaft Materials Used In Contact With Springflon®

Mat	erial	Hardness RC	Applications
	Туре 303	20	Very soft, for low speeds and pressures, moderate corrosion resistance.
Stainless	Type 304	28	Soft, for low speeds and pressures, moderate corrosion resistance.
Steels	Type 316	28	Soft, for low speed and pressures, excellent corrosion resistance.
510013	Type 440C	44	Hardest stainless steels, for higher speeds and pressures, lower corrosion resistance.
Carbon Steel	SAE 1045	58	Higher strength than other low carbon steels. Use in non-corrosive media only.
Alloy Steel	4340	50	Applications in non-corrosive media, for moderate speeds and pressures.
Tool Steel	D-2	62	High hardness and wear resistance, low corrosion resistance. For high speeds at low pressures.
Soft	Hard- anodised Al 6061-T6	70+	Excellent low-friction bore surface for reciprocating applications. Not recommended for rotary service.
Metals	Bronze	85 Rockwell B	Light-duty service at low speeds and pressures, where friction and corrosion are not concerns.
	Mild Steel	-	Light-duty service in non-corrosive media only.
Non- Metallics	Ceramic	70	High wear resistance at high pressures or high speeds.

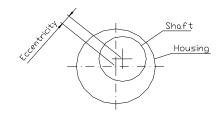




## Plating & Coating

Typical Platings & Coatings used in contact with Springflon[®]

Coating Type		Hardness Rockwell C	Suggested Thickness	Corrosion Resistance	Abrasiveness to Seal
Chrome Plating	Hard Chrome	65	0,02-0,127mm	Fair to Good	High
Chrome Plating	Thin Dense Chrome	70	0,005-0,015mm	Excellent	Low
Electroless	Nickel as Deposited	48 - 52	0,025mm.min.	Excellent	Low
Nickel Plating	Nickel Fully Hardened	58 - 70	0,025mm.min.	Good	High
Plasma Spray Oxide		71	0,127-0,762mm	Excellent	Low
Coating	Al Oxide	60 - 69	0,127-0,762mm	Excellent	Low
HVOF2 (High velocity oxygen fuel)	Tungsten Carbide	67 - 74	0,127-0,762mm	Excellent	Low
Anodising	Hard Anodised Al	Over 70	0,013-0,114mm	Excellent	Low





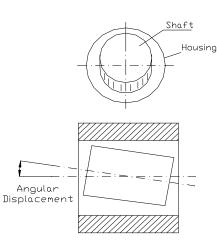

# Shaft Alignment

#### **Recommendations For Springflon® URF**

#### Eccentricity



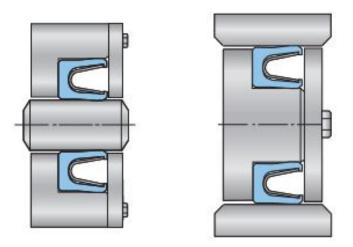
**Eccentricity** is where the shaft rotates about its own axis but is offset from the centerline of the housing. Hereunder the maximum recommended values:


Series	Max. Deviation
URF-332	0,05
URF-964	0,10
URF-732	0,15
URF-932	0,20

#### Runout

# Moute Housing

**Runout** is when the shaft is misaligned to the housing, but is rotating about the housing center, causing a wobble. This should be minimised !


#### **Angular Displacement**



Angular displacement is when the axis moves at an angle away from the true centerline. This should be minimised too it will lead to a premature seal wear.

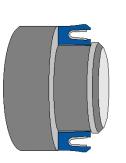






### Springflon[®] Installation




**SYSTEMS** 

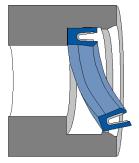


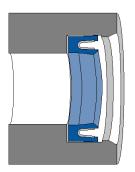
### Half Open Groove: Piston

Press one part of the seal in place into the groove.

Push the remaining seal over the lip and into the groove by carefully pushing with fingers





**SYSTEMS** 



### Half Open Groove: Rod





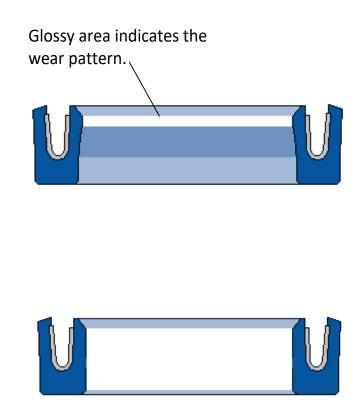


Place a section of seal in place within the groove

Pushing firmly with fingers, work the remaining seal in place into the groove.








### Troubleshooting





## Wear Dynamic Sealing Surface



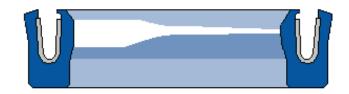
#### **Even Wear Pattern**

Normal wear, no problem


#### **Even Wear Pattern Across Entire Seal Length**

- If high pressure is normal wear
- If with low pressure mean excessive interference






## Wear Dynamic Sealing Surface



#### Normal Wear Pattern With Areas of Reduced Wear

Yielded spring area



Heavy Wear Pattern On One Side Of The Seal

Shaft or bore misalignment





### Wear Dynamic Sealing Surface



#### Normal Wear Pattern With One Heavy Wear Spot

- Misaligned spring weld
- Object lodged in spring groove



#### **Crack Or Hole**

- Improper support of seal at high pressure
- Flaw in jacket material





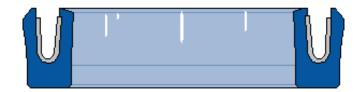
## Wear Dynamic Sealing Surface



#### Axial Scratches With Metal Flakes Embedded In Lip

- Rough mating surface
- Poor quality plating
- Abrasive media




#### **Circumferential Scratches**

- Rough mating surface
- Poor quality plating
- Abrasive media
- Excessive wear on a soft shaft





### Wear Dynamic Sealing Surface



#### **Axial Nicks, Cuts Or Scratches**

- Damage during installation
- Burs or nicks on the hardware





### Extrusion



#### Slight Crease Or Witness Mark At Heel

• Normal in pressurised service



#### Heavy Extrusion At Heel Of The Seal

- Excessive Extrusion Gap
- Seal material is too soft





### Extrusion



#### Heavy Extrusion At Heel Of The Seal

- Excessive Extrusion Gap
- Seal material is too soft



#### Thin Strip Extending Forward On The Dynamic Lip

• Seal was pinched in the hardware during assembly

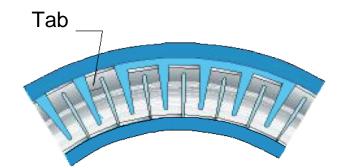




### Extrusion

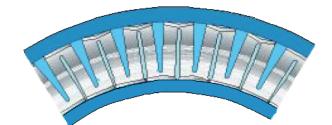


Thin Strip Extending Forward On The Dynamic Lip With Heel Distortion


• Pressure behind the seal



**SYSTEMS** 




### Spring Damage



#### Gap Between Spring Tabs And Inside Lip

• Spring has been overcompressed in service or during installation



#### **Distortion Or Damage To The Spring Tabs**


• Excessive stretching, bending or twisting during installation



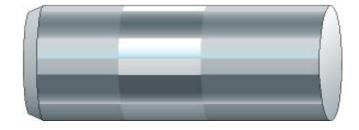
**SYSTEMS** 



### Spring Damage

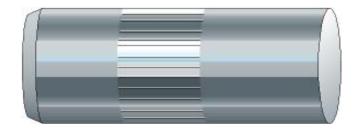


#### **One Or More Spring Tabs Missing**


• Fatigue failure due to repetitive side loading



**SYSTEMS** 




### Wear - Reciprocating Rod or Bore

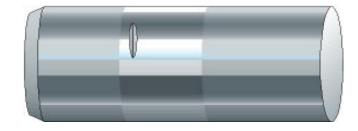


Some Polishing In Contact Area With Seal Material Residue

Normal Condition

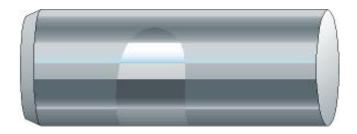


#### **Axial Scratches On Contact**


• Particles from the shaft or media embedded into the seal



**SYSTEMS** 




### Wear - Reciprocating Rod or Bore

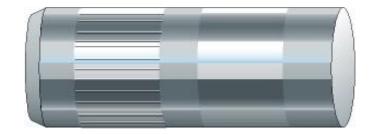


#### Nicks Or Burrs On The Installation Path

• May cause seal damage during installation

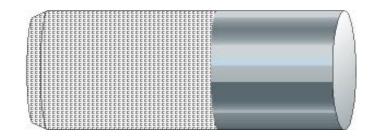


#### Irregular Wear Pattern


- Out of round surface
- Shaft misalignment
- Shaft wobble



**SYSTEMS** 



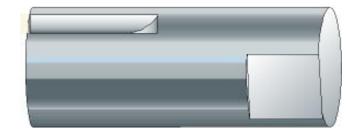

### Wear - Reciprocating Rod or Bore



#### **Galling Caused By Bearing Or Bush Contact**

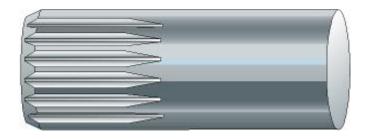
• May create particles that can damage the seal




**Corrosion Of Hardware On The Media Side Of The Seal** Rod or bore material incompatible with the media



**SYSTEMS** 



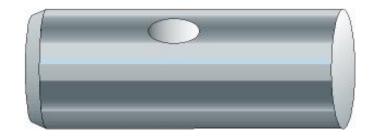

### Wear - Reciprocating Rod or Bore



#### Sharp Corners, Key-ways, Or Flat Areas

• May scratch the seal during installation




#### Splines, Threads, Or Knurls

• May scratch the seal during installation

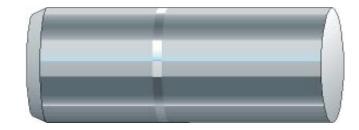




### Wear - Reciprocating Rod or Bore

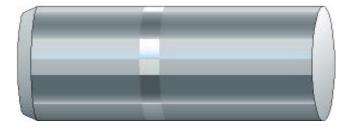


#### Sharp Edge On Ports Or Grooves


• May damage the seal during installation



**SYSTEMS** 




### Wear - Rotary Shaft

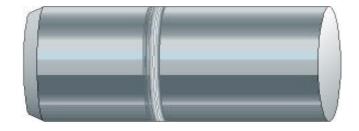


#### Polishing In Contact Area With Some Seal Residue

• Normal condition

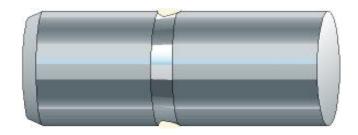


#### Polishing In Wider Contact Area With Some Seal residue


• Normal for high pressure conditions



**SYSTEMS** 




### Wear - Rotary Shaft

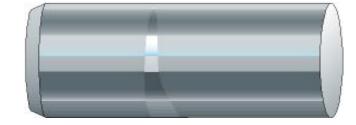


#### **Circumferential Scoring**

- Insufficient shaft hardness
- Seal material too abrasive for shaft
- No lubrication



#### Groove Cut Into Shaft By Seal


- Insufficient shaft hardness
- Seal material too abrasive for shaft
- No lubrication



**SYSTEMS** 



### Wear - Rotary Shaft



#### **Inconsistent Polish Pattern**

- Out of round surface
- Shaft misalignment
- Shaft wobble



PANTECNICA S.p.A. Via Magenta, 77/14A - 20017 RHO (MI) Italia T: +39 02 93261020 – E: <u>info@pantecnica.it</u> www.pantecnica.it